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J. Phys. A: Math. Gen. 24 (1991) 229-244. Printed in the UK 

On the growth of Eden clusters in continuous time 

Douglas Poland 
Department of Chemistry, The Johns Hopkinr University, Baltimore, M D  21218, USA 

Received 7 August 1990 

Abstract. Power series in the time are constructed for various versions of Eden-like clusters. 
The use of an Euler transform gives series with smoothly varying coefficients of positive 
sign, indicating that the radius of convergence of  the series in the new variable is the 
physically interesting singularity. The  growth exponent obtained from the beginning terms 
of the series is larger than expected from the asymptotic behaviour of  large compact 
clusters, indicating that the accurate determination of the asymptotic form requires very 
long series. 

1. Introduction 

The Eden model (Eden 1961) is one of the simplest models for the unlimited growth 
of a cluster on a lattice. Here we treat the Eden model as a growth model in continuous 
time to see whether or not one can extract information about the asymptotic behaviour 
from power series in the time. The construction of time-power series has proved useful 
for the treatment of cooperative adsorption to lattices (Poland 1989, 1990). The main 
difference between adsorption models and growth models like the Eden model is that 
in the former one is calculating the average density of particles on the lattice, a quantity 
that is bounded (and usually defined to vary between zero and one), while in the latter 
the number of particles in the average cluster goes to infinity. 

In the Eden model one starts with a single cell, species (1, 1) in figure l (n) ,  and 
allows the growth of a second cell into one of the four surrounding cells (perimeter 
cells), where the cell is chosen at random, giving rise to the dimer, species (2 ,2)  in 
figure I(a). In the next state one goes from species ( 2 , l )  to one of the species (3, I )  
or (3,2), and then on to one of the species ( 4 , l )  to (4, S ) ,  and so on, the process giving 
rise to the so-called lattice animals. 

It is known that this process gives rise to compact structures (where the fractal 
dimension is the same as the dimension of space) and that the interior of large clusters 
contains very few holes, the holes being concentrated near the surface (Eden 1961, 
Richardson 1973, Meakin 1983). A sample cluster is shown in figure 2. Growth takes 
place from the surface cells (shown in light shading). While the overall cluster is 
compact, the surface can be ragged. The nature of the surface has been extensively 
studied (Meakin and Witten 1983, Plischke and Racz 1984). The number of growth 
sites is governed by the exponent S ( n  being the number of particles in a cluster) 

G - n 8  (1.1) 

S =  ( d - l ) / d  ( 1.2) 
where 8 is rigorously known as a function of the dimension of space (Richardson 1973) 

In two dimensions equation (1.2) gives S =$, which of course is what one expects for 
compact circular clusters. 
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Figure 1. ( a )  Latfice animals for n = 1-4 far the plane-square lattice. ( b )  Three-dimensional 
lattice animals for n = 4. ( c )  Two modes of  growth for cell clusters: in model A all perimeter 
cells have the same probability of turning into a cell; in model B the probability of  
transforming a perimeter cel l  is proportional to the number of neighbouring occupied faces. 

Our purpose here is to explore the Eden model when the growth of clusters is 
governed by differential equations, i.e. the growth takes place in continuous time rather 
than in discrete steps. We expect that for large n the rate of growth will depend on 
the average number of growth sites as follows: 

d(n)/dt - (G) - (n)^' (1.3) 

where 6' measures the average amount of surface. We anticipate that for sufficiently 
large n we will have 6'= 6 =+, that is, we will obtain the same growth exponent as in 
(1.2). Integrating (1.3) and changing variable via the Euler transform 

s = t / ( l +  t )  t = s / ( l  - s )  (1.4) 
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Figure 2. Illustration of a growing duster. The interior of the cluster (dark shading) tends 
to be compact with few interior holes. The border (light shading) is where growth occurs 
and is mare ragged. The exponent 6' measures the extent of the growth surface. ' 

we bbtain 

( n )  - (L) 
I-S 

(1.5) 

where 

Our  purpose here is to see how well behaved the  s-series is for the Eden model and  
to determine whether this is a practical way to ascertain the asymptotic behaviour. 
There are precedents for determining exponents from a moderate number of exact 
coefficients in the appropriate series in the field of equilibrium critical phenomena. 
The best example is the low-temperature expansion of the coexistence curve in the 
two-dimensional k ing  model where Pad6 approximants to the low-temperature series 
for the order parameter give the famous exponent p = f with great accuracy. Here we 
explore whether or  not analogous series for the time evolution of Eden clusters are 
similarly useful. 

Julien and Botet (1985) have outlined three different modifications of the Eden 
model, denoted as models A, B and C; models A and B are illustrated in figure l ( b ) .  
In model A (which is the version most commonly studied) any of the perimeter sites 
of the given animal (in the illustration this is species ( 3 , 2 ) )  can be turned into a new 
cell with equal probability. In model B (the original model of Eden) every perimeter 
face of the original animal is considered to be  able to give rise to a new cell with equal 
probability. Thus the corner cell in the illustration, which has two adjacent faces of 
occupied cells, will have twice the probability as  the other perimeter cells of becoming 
the new cell. I f  a perimeter cell is surrounded by three existing cell faces, the probability 
is three times as great for growth in that cell as in a cell bordered by just a single 
occupied cell, and so on. In model C one  first picks at random an occupied site on 
the surface of a cluster and then picks at random an unoccupied site adjacent to the 
particle just chosen. This mode of growth thus involves two steps in determining the 
ultimate probability of growth and cannot easily be converted into a continuous time 
form. The beginning terms in the animal-counting series for the plane-square lattice 
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are (Harary 1964) 

r = x+x2+2x3+5x4+ 12X5+35X"+ 108x'+.. . ( 1.7) 
where the coefficient of X" gives the number (irrespective of orientation on the lattice) 
of distinct lattice animals containing n cells. 

I .  lime-power series 

To construct the evolution of the clusters in continuous time one must write down the 
differential equations connecting the evolution of the various clusters. The hierarchy 
of equations begins with (where P,, is the probability of species ( n ,  m)) 

I 

d P , , / d f =  -4kP,, .  (2.1) 

The factor of four arises since their are four faces in species (1, 1 )  from which growth 
can occur. The parameter k is the growth rate constant; with no loss of generality we 
can set k = 1 (which is equivalent to scaling the units oftime). The differential equations 
involving the species shown in figure l ( n )  are given below (the equations given are 
for model A; the numbers of parentheses are the changes required to treat model B): 

dP ,  ,/df = -4P1 I 

dP, , /dt= -8P3, +2P2, dP3, /df= -7(8)P3?+4P2, 

dP2, jdf=-6P2,+4P, ,  

d P4,/d f = - lop4, + 2P3 I 

d P4Jd t 

dP4j/d!= -8P4j+!(2)P3i, 

dP4,jdf = -9(10)P4,+4P3,+2P3, 

dPa,/dt= -8(10)Pa,+ZP,t +2P32 

(2.2) 
- 8( 10) Pa3 + 2 P32 

The time evolution of each species can be written as a series expansion in time, 
m 

P,, = q ( n ,  m ) f k / k !  
k = O  

which become recursion relations for the a k ( n ,  m). The recursion process begins with 

4 1 ,  I ) =  1 ao(n, m )  = 0 ( n > l , a l l  m). (2.4) 

ax(., a: = o  ( k < ( f l - I ) ,  a!! z:. (2 .5)  

( n ) = 1  n 1 P", (2.6) 

With (2.2) one finds that 

The average cluster size is given by 

n m  

giving 
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We have determined the series for (n) through the a,-term(requirig consideration 
of clusters through n = 7 ) .  We find (for model A the coefficient of the ?-term is zero): 

8 16 48 176 
2! 4! 5 !  6 !  

8 16 32 192 1408 
2! 3! 4! 5 !  6 !  

( n ) = 1 + 4 t + - t 2 + - f 4 - - f ~ + - 1 ~ +  . . .  (model A) 

( n ) = 1 + 4 r + - f 2 + - f ~ - -  t 4 + - t s - -  t6+  ... 
(2.9) 

(model B). 

If one applies the above procedure to the case of irreversible growth from a single cell 
in one dimension one obtains the exact result (n)= I +2f. 

For most models in which one calculates some type of lattice density as a function 
of time, the time-power series strictly alternate in sign (Poland 1989, 1990). Here, 
where we are describing a single cluster, the signs have an erratic behaviour. Converting 
to the s-variable defined in (l.4), we have 

( n )  = 1 + 4s + 8s’+ 12s’+ 16js4+ 22&s5+ 28%s6+. . . 
( n )  = 1 +4s+ss’+ 14jS’+22$4+ 32&SS+43gs6+. . . 

In contrast to the behaviour of the f-series in (2.9), the coefficients in the s-series given 
in (2.10) are very well behaved. 

We define the ratio of successive coefficients in the s-series in the standard manner 

(model A) 

(model B). 
(2.10) 

m 

(n)= 1 b,s* 
k = O  

(2.11) 

If the singularity of (1.3) is the closest singularity in ( n ( s ) )  to the origin, then the ratios 
of coefficients should be asymptotic to the following linear relation (Stanley 1971): 

(2.12) 

Taking s,, = 1 (corresponding to t = m), each value of r,, with ( l .6) ,  gives an estimate 
of the exponent S‘. These estimates are shown in table 1 for model A and model B. 
The values for 8‘ so obtained all cluster in the neighbourhood of 8 ’ ~ : .  The data for 
model B are particularly well behaved. The ratios rk plotted as a function of 1 f k for 
the model B system are shown in figure 3. The straight line is (2.12) using s,, = 1 and 
S’=$  ( y  = 3).  Thus while the ratios are very smooth, for small clusters one does not 
find the expected limiting behaviour of a’=;. 

Table I .  Estimateofthe exponent S’from ratios ofthe coefficients in the appropriate E-series 

Two dimensions: Three dimensions: 
k Model A Model B Model B 

1 0.750 0.750 0.833 
2 0.667 0.667 0.800 
3 0.600 0.714 0.824 
4 0.609 0.686 0.819 
5 0.630 0.679 0.827 
6 0.642 0.674 
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Figure 3. The ratios rK as a function of l i k  for the model B case in two dimensions. The 
straight line is equation (2.12) with s,= 1 and S ' = J  ( ~ ' 3 ) .  

An alternative analysis of the data involves the use of the Dlog/Pad6 technique 
(Baker 1975). Weformthefunctionf(s)=(n)-1 andconstructtheseriesdlnfldin s =  
1+2s+3.333s2+2.711s4+2.777s5+. . . which, if the singularity in (1.5) dominates the 
behaviour of the function, should be a simple pole (all coefficients equal). Removing 
the simple pole by multiplying d In f / d  In s by (1 - s) we then form the (2,3) and 
(3,2) Pade' approximants to the resulting series. When the Pade' approximants are 
evaluated at s = 1 they give estimates of the exponent y (the residue of the pole). For 
the two approximants indicated we find (converting to 8 ' )  8' = 0.747 and S '= 0.649, 
with an average value close to the value obtained by the ratio method. 

To see if the behaviour of the series is similar for the model in three dimensions 
we have calculated the analogous series for (n) through the :'-term for cells on the 
cubic lattice. The three-dimensional clusters of cubes for n = 4 are shown in figure 
l ( b )  (species (4,6) is chiral). The species shown in figure l ( a )  are the same in the 
three-dimensional case, one simply interprets the squares as cubes. The counting series 
for animals in three dimensions begins 

r = x + x * +  7 ~ ~ + 2 3 ~ ~ + .  . . . (2.13) 

We will use model B kinetics, i.e. we assume that each occupied face bordering a 
perimeter cell can give rise to the formation of a new cell. The differential equations 
for the species shown in figure 1 are 

d P , , / d i =  -6P,, dP2, /dt=-10P2,+6P, ,  

dP3, /dt  =-14P3,+2P2, d PJdt = - 14P9 + 8 P2, 

d P 4 , / d t =  -18P4,+2P3, d P4Jd 1 = - 18PdZ + 8 P3 I + 2 P2z 
(2.14) 
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Using the initial conditions of (2.4) one finds 

24 96 192 1152 
2! 3!  4! 5 !  

(n)=l+6t+-tr '+-tr3+- t4+-t5+.. 

(2.15) 
( n ) =  l + 6 s + 1 8 s 2 + 4 6 ~ 3 + 9 6 ~ 4 + 1 9 1 j ~ S + .  . . . 

Again, the s-series is very uniform. The successive values of S' calculated from the 
respective ratios are given in table 1. While the limited data we have are not as smooth 
as for the two-dimensional case, the values of 8' cluster around the value 8'=0.82. 
For large clusters in three dimensions one expects, from (1.2). S'= S =+. 

We have already commented that time-power series for adsorption models, giving 
the average site occupation probability as a function of time, generally have coefficients 
that alternate in sign. When inverted to give the time as a power series in the average 
density, these series are often very well behaved, the coefficients all being positive with 
the radius of convergence determined by the physically interesting steady-state value 
of the density. In order to invert the time series for the Eden clusters considered here 
we introduce two new variables, 

(2.16) 

For models A and B in two dimensions one then finds 

r ' =  W + ~ W ~ + f W ' + ~ W 4 i ~ W ~ + , W 6 + .  . . 

t '= w i f w ' + ~ w ~ + ~ w ~ + ~ w ~ ~ ~ w ~ + . .  . (model B). 

(model A) 
(2.17) 

From ( lS) ,  (1.6) and (2.16) we expect 1' to have the asymptotic form 

(2.18) 

The w-series in (2.17) are well behaved in the sense that the coefficients are all positive 
and are of the same order of magnitude. The ratios, at least for the beginning terms 
that we have in (2.17), are not however very smooth, and hence the series are not, in 
this case, as useful as the s-series of (2.10). It appears that the radius of convergence 
of the series in (2.17) is determined by the physically interesting singularity w,,= 1 (as 
t'+ W). 

3. Linear reversible growth 

To explore the nature of time series for other cluster growth models we consider the 
case where growth can take place only at the free end of a linear chain, giving rise to 
configurations on the plane square lattice such as that shown in figure 4(a).  For this 
model we consider the possibility of reversible growth where a cell at the end of a 
chain can also die. We take k ,  as the rate constant for the birth process and kd for the 
rate constant for the death process; for simplicity we set kh = 1 and k ,  = K.  
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I b l  

l i l  

Figure 4. ( a )  Example of a linear cluster where the maximum coordination number or r 
'given cell is two. ( h )  Example of a branched cluster where the maximum coordination 
number of a given cell is three. ( e )  Illustration of the two reactions, growth (ram the ends 
(with rate parameter k , )  and growth from the interior (with rate parameter kJ, far bfanched 
cIusters. I 
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Using the labelling of figure l ( a )  (deleting species (4,4) and (4,5) since they are 
not linear clusters) one  has the analogue of equations (2.2), 

d P , , / d t =  -4P,,+2KP2, 

dPz,/dt  = -6P2,+4P,,+2KP3, +2KP3, 

dP,,/dt = -6P,, +2P2, +2KP4, + K P ~ ~  

dP32/dt= -4P32+4PZI + K P d 2 +  2KPd3 (3.1) 

~ P , , / ~ I = - ~ P , , + ~ P , , + ~ K P S , + K P S ~  

dP,z/di = -5P,2+4P3, +2P32+ K P 5 2 +  2KP53+ K P 5 4 +  2KP5,+2KP,, 

dP4,/di = -4Pa3 + 2P3,+ K P S 4 +  2Kp5,. 

We have determined the coefficients ax in (2.7) through a,: 

a o = l  a , = 4  0 2  = 8 - 8 ~  

a , = - 6 4 + 1 6 ~ + 1 6 ~ ~  

a4=448+ 224K -i92K2-32K2 

a,= -2944-4160~ + 7 6 8 ~ ~ + 8 9 6 ~ ’ + 6 4 ~ ~  

a6 

a, = -1 16 224 -407 5 5 2 ~  - 306 4 3 2 ~ ’ +  61 4 4 0 ~ ’ +  71 6 8 0 ~ ~ +  !?984~’+ 5 2 6 ~ ~ .  

Switching to the s-series we have: 

18 688+45 9 5 2 ~  + 11 9 0 4 ~ ~  - 11 5 2 0 ~ ’ - 3 2 0 0 ~ ~ -  128K5 

bo= 1 b , = 4  b2 = 8 - 4 ~  

b3 = I f -  5 t K  + 2 x K  
2 2  

b, = 23+ 5fK - l f ~ ’  (no K~ term) 

bS = 6&+ 2$K -!$K2 + 2i2jK3++K4 

b 6 = 7 g - 9 Z  45K -4zK2+!3K3-12 g K  - G K  

b7=6&- 1 5 $ ~ +  1 4 $ ~ ~ +  1$+K3-4$K4+EK5++&K6. 

For k = 0  (irreversible growth) equations (3.3) give 

( n )  = 1 +4s + 8 s 2 +  1 f s 3 + 2 ~ s 4 + 6 & s S + 7 ~ s 6 +  6&s1+. . . . (3.4) 

For irreversible linear growth we expect 

(3.3) 

d (n ) /d t  = constant 

( n )  - constant (A) (3.5) 

The asymptotic form of (3.5) requires that the coefficients in (3.4) settle down to a 
constant value and this seems to be happening for the coefficients shown. 
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4. Branched clusters 

Between the model of linear clusters discussed in the previous section and the general 
growth model of the first two sections is a model where a branch point can have a 
maximum coordination number of three, giving rise to branched or tree-like clusters 
as illustrated in figure 4(b). We will consider the case where growth from the ends of 
chains will occur with rate parameter k ,  while branching from the interior of a chain 
will occur with rate parameter k,. For simplicity we take k ,  = 1 and k, = K. The 
differential equations describing the growth for the clusters shown in figure l ( a )  
(deleting species (4.5)) are 

d P , J d t =  -4P1, 

dP,, /dI= -6P2t +4P, ,  

dP,,/dt = -6P3, -2Kp3,+2P2, 

The exact series through a6 for this model are given below, where the ax are finite 
series in powers of the branching parameter K :  

a ,=1  a , = 4  a 2 = 8  

a, = - 6 4 + 4 8 ~  

a , = 4 4 8 - 1 1 6 8 ~ + 1 4 4 ~ ~  (4.2) 

a, =-2944+21 744K - 7 6 8 ~ ~ + 2 4 0 ~ '  

a6= 18 688-304384~ -43 3 2 8 ~ ~ -  10 5 7 6 ~ ' + 4 8 ~ ~ .  

Switching to the s-series one has 

bo= 1 b, = 4  b 2 = 8  

b, = l f + X ~  

b,= 2 j - 2 4 ; ~  + 6~~ 

b, = 6&+ 3 4 & ~  + 1 7 2 ~ '  + 2K'  

b 6 -  -7" 4 5 + 7 6 ~ ~ - 3 2 ~ K 2 - 4 ~ K ' + ~ K ' .  26 

(4.3) 

At K = 1 the 1- and s-series are 

(n)= 1+41+812/2!- 16t'/3!-576t4/4!+18 21215/5!-365 6641'/6!+. . . 
(n) = 1 +4s + 8s2+9fs3 - 16s4+60&s5+47&js6+. . . . 

(4.4) 

(4.5) 
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Unlike the s-series for compact clusters in  (2.10), the above series for branching clusters 
do not give well-behaved ratios. Of course, when K = O  the series of (4.2) and (4.3) 
revert to the results for the linear model treated in the previous section. 

5. Irreversible filling of a lattice 

In the previous sections we have considered the growth of a single cluster from a single 
seed cell. The growth of the cluster was not restricted by any boundary conditions and 
the cluster size became infinite as t+m. I f  one instead begins with a finite density of 
randomly distributed seed cells, as shown in figure 5 ( a ) ,  then the growth, as illustrated 
in figure 5(b)  (the new cells are shaded light; the original seed cells, the same 
configuration as given in figure S(a) ,  are shown shaded dark) will eventually fill the 
lattice and thus have a limit as t + m .  The clusters clearly merge until finally there is 
one large cluster; the average cluster size at close packing is simply l / p o 3  where po is 
the original concentration of seed cells. 

To treat the kinetics of this lattice-filling process (using model B kinetics) we 
consider the different possible configurations of cells surrounding an empty site that 
we take as the locus for growth. These configurations are designated as species B,, to 
B, in figure 6. We let Bx represent the probability of species Bx for one species 
orientation (thus there are four orientations of species B, and the net density of this 

l b l  

Figure 5. Irreversible filling of a lattice. l a )  One begins with seed cells distributed at 
random. ( b )  Growth (shown by shading) from the original seed cells (shown as dark cells) 
eventually fills the lattice. 
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Figure 6. Latlice configurations required 10 treal the irreversible filling of  a lattice from 
randomly placed seed cells. 

species is 4Bk) .  Then the rate of increase of occupied cells, species A in figure 6, is 
given by 

(5.1) 

The factors multiplying the BA indicate the number of orientations of species B, and 
the number of faces from which growth can take place into the central site. Thus the 
8 in the 8B,-term reflects the fact that there are four orientations of species B2 and 
that there are two cell faces from which growth can occur into the central site. 

In order to obtain a time series for A (or p )  given in (2.7) we require the differential 
equations for the B k .  We note that 

(n)=P/Pu. (5.2) 

dp/d t  = dA/dt = 46, + 8 6, + 4 6, + 12 6, + 4 6,. 
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These equations require consideration of the species Ck shown in figure 6. The 
differential equations are 

dBu/dt = -4f, 

dBl/dt=-B,-2f2-f,+f, 

dBZ/dt = -282- 2f4+ 2f2 

dBJdt = -2B3-2fs+2f3 

dB,/dt = -384 - f6+fs + 2f4 
dB,/dt = -4Bs+4f6. 

(5.3) 

where 

f, = c, + 2C2+ 4c3 + 2c, + 3 c, 
J2 = C,+ C,+ C6+2C,,,+2C,,+2C,,+3C,, 

f, =2c,+ Cs+4C,,+2C,,+3C2, 

f4=  C , ~ + C , , + C , 2 t 2 C , 5 + 2 C , 6 + 2 C , ~ + 3 C 2 ,  

fs =2c,,+ C,4+4C,6+2C19+3C*2 

j ;  = 2c,,+ Czo+ 4c2, + 2c2, + 3c,, . 

(5.4) 

One then requires equations for dC,/dt, etc., requiring eventually an infinite hierarchy 
of coupled equations. 

The differential equations are recursion relations for the coefficients in the time 
series, e.g. the ax in (2.7). The recursion process is begun with the probabilities of the 
clusters shown in figure at t = 0. For random clusters one has (where po is the original 
density of seed cells): 

Po(N = P O  Pu(Bo)=(l -PO)' 

PO,) = p0(i -Pa)4 P,(B,)=P,(B,)=p:(l-po)' 

PdBJ  = ~ i ( 1  -PO)' 
15.5) 

Po(Bs) = PO( 1 - pol4 

PO(C0) = (1 -Po)* P"(C,) = P"(1 -Pa)' etc. 

If the clusters were not originally distributed at random one would require a more 
complicated description of the probabilities of the clusters, for example a density 
expansion derived from the equilibrium statistical mechanics of a lattice gas with 
attractive interactions (Ising model). 

We have derived the exact po dependence of the a, through a3 which requires the 
construction of the differential equations (not shown) for the C,. We obtain 

ao=po 
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The use of (5.6) in (5.2) gives the behaviour near I = 0 of the filling in of the lattice 
from randomly placed seed cells. The final stages of the process can he determined 
from the particle configurations shown in figure 7. One has 

dA/dt = 4 B + 6 C + 8 D , + 8 D 2  

dB/di  = -4b+6C+2D1+4D, .  

dC/d t= -6C+6D,+6D, .  . . 
dD, /d t= -SD,+ .  . . 
dDJdt  = -8D>+. . . . 

(5.7) 

Truncating the species considered at D, and D,, the equations can then he successively 
integrated giving 

p = A  = (I + b e-4r + c e-6r + d e-" +. . . . (5 .8 )  

The coefficients a, b, etc., in (5.8) will he influenced by the truncation, hut the exponents 
will not. Constructing the function 

(5 .9)  

one has 
A - eC4'. (5.10) 

We recast (5.2) in the form (using the variable s defined in (1.4)) 

A = exp[ -4(L) 1-s k(r) ]  (5.11) 

where 

k ( s ) =  bo+ b l s +  b ,s2+.  . . . . (5.12) 

n 
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8 .  0. . 
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Figure 7, The most probable lattice configurations at high density of occupied cells 
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Figure 8. The time course (in terms of the variable 3) for the irreversible filling of a lattice 
from randomly placed seed cells. The numbers refer lo the original density of seed cells. 
The curves were calculated using equation (5.11)  with equation (5.15)  far k(r) .  

With (5.6), the coefficients in (5.11) are given as 

bo=po 

bt = 2 ~ : +   PO(^ - 4 ~ 0 +  3~:) / (1  -PO) 

b2 

(5.13) 

(4po+ l ) b l  - 8pA/3 + 2p,( 1 - lOp,+ 21pi  - 12pi)/[3( 1 - po)]. 

The quantity k(s) - '  defined in (5.11) is a kind of time-dependent relaxation time. 
From (5.13) and (5.10) we have 

k ( s  = 0) = po 

k ( s  = 1) = 1. 
(5.14) 

Thus the filling process is faster than simple exponential decay, i.e. the effective k(s) 
increases from po to one over the course of the relaxation. 

We can construct a function that has the correct beginning terms of (5.13) and the 
correct long-time limit of (5.14) by the following device. We add an additional term 
to the truncated form for k ( s )  as follows 

(5.15) k ( s )  = bo+ b,s+ b2s2+cOs3 

such that 

co = 1 - (bo+ b, + b?). (5.16) 

This function gives an approximation for the whole time course of the relaxation with 
the first three derivatives exact and the correct limiting behaviour (and of course the 
correct limiting value of p = 1 at I = 03). The behaviour of p ( s )  for various values of 
po according to the use of (5.15) in (5.11) is shown in figure 8. 

6. Discussion 

We have shown that time-power series are a useful way to describe the growth of 
clusters in the Eden model and modifications thereon. In particular the conversion via 
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an Euler transform to the variable s of (1.4) gives series for the two variants of the 
Eden model studied that give smoothly varying ratios. For the series we studied the 
exponents calculated from the series have not yet settled down to their expected 
asymptotic values. Thus in two dimensions we obtain a'-+ rather than the expected 
asymptotic limit S =;. However, the series method appears to be a very useful way to 
describe the unbounded growth of clusters. In addition we have seen that time-power 
series are useful in the description of branching models and models for the filling of 
the lattice as a function of the number of original seed cells. 
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